Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 11


$$\ln |\sinh x|+C$$

Work Step by Step

Given $$\int \frac{\cosh x}{\sinh x} d x $$ Let $$ u= \sin h x \ \ \ \to du = \cosh x dx$$ Then \begin{aligned} \int \frac{\cosh x}{\sinh x} d x &=\int \frac{1}{u} d u \\ &=\ln |u|+C \\ &=\ln |\sinh x|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.