Answer
$$\frac{1}{2} \cosh \left(x^{2}+1\right)+C$$
Work Step by Step
Given $$\int x \sinh \left(x^{2}+1\right) d x$$
Let $$ u=x^2+1 \ \ \ \to du =2xdx$$
Then
\begin{aligned} \int x \sinh \left(x^{2}+1\right) d x &=\frac{1}{2} \int \sinh u d u \\ &=\frac{1}{2} \cosh u+C \\ &=\frac{1}{2} \cosh \left(x^{2}+1\right)+C \end{aligned}