Answer
$$-\operatorname{csch}x+C$$
Work Step by Step
Given $$\int \frac{\cosh x}{\sinh^2 x} d x $$
Let $$ u= \sin h x \ \ \ \to du = \cosh x dx$$
Then
\begin{aligned} \int \frac{\cosh x}{\sinh ^{2} x} d x &=\int \frac{1}{u^{2}} d u \\ &=\int u^{-2} d u \\ &=-u^{-1}+C \\ &=-\frac{1}{\sinh x}+C \\ &=-\operatorname{csch}x+C \end{aligned}