Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 27



Work Step by Step

\begin{aligned} \int_{-3}^{-1} \frac{1}{x \sqrt{x^{2}+16}} d x &=\int_{-3}^{-1} \frac{1}{x \sqrt{16\left(\frac{x^{2}}{16}+1\right)}} d x \\ &=\int_{-3}^{-1} \frac{1}{4 x \sqrt{\left(\left(\frac{x}{4}\right)^{2}+1\right.})} d x \\ &=\int_{-3}^{-1} \frac{\frac{1}{4}}{\left.4 \cdot \frac{x}{4} \sqrt{\left(\left(\frac{x}{4}\right)^{2}+1\right.}\right)} d x \\ &=\frac{1}{4}\left[-\operatorname{csch}^{-1}\left(\frac{x}{4}\right)\right]_{-3}^{-1} \\ &=\frac{1}{4}\left[\operatorname{csch}^{-1}\left(-\frac{3}{4}\right)-\operatorname{csch}^{-1}\left(-\frac{1}{4}\right)\right] \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.