Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 44

Answer

The total mass is $m \simeq 166.857$ g.

Work Step by Step

We have the parametrization ${\bf{r}}\left( t \right) = \left( {\cos t,\sin t,{t^2}} \right)$, ${\ \ \ }$ for $0 \le t \le 2\pi $ and the mass density $\delta \left( {x,y,z} \right) = \sqrt z $ g/cm. So, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( { - \sin t,\cos t,2t} \right)\cdot\left( { - \sin t,\cos t,2t} \right)} $ $ = \sqrt {{{\sin }^2}t + {{\cos }^2}t + 4{t^2}} $ $ = \sqrt {1 + 4{t^2}} $ Total mass: $m = \mathop \smallint \limits_0^{2\pi } \delta \left( {x,y,z} \right){\rm{d}}s$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$, where in this case $f\left( {x,y,z} \right) = \delta \left( {x,y,z} \right) = \sqrt z $, we get $m = \mathop \smallint \limits_0^{2\pi } \delta \left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_0^{2\pi } t\sqrt {1 + 4{t^2}} {\rm{d}}t$ Write $u = 1 + 4{t^2}$. So, $du = 8tdt$. By changing the variable from $t$ to $u$, the integral becomes $m = \frac{1}{8}\mathop \smallint \limits_1^{1 + 16{\pi ^2}} {u^{1/2}}{\rm{d}}u = \frac{1}{8}\cdot\frac{2}{3}\left( {{u^{3/2}}|_1^{1 + !6{\pi ^2}}} \right)$ $ = \frac{1}{{12}}\left( {{{\left( {1 + 16{\pi ^2}} \right)}^{3/2}} - 1} \right) \simeq 166.857$ So, the total mass is $m \simeq 166.857$ g.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.