Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 56

Answer

We verify the work performed: (a) $W = {\bf{F}}\cdot\overrightarrow {PQ} $ (b) $W = {\bf{F}}\cdot\overrightarrow {PQ} $

Work Step by Step

We have the constant vector field ${\bf{F}} = \left( {2, - 1,4} \right)$. (a) We have $P = \left( {0,0,0} \right)$, $Q = \left( {4,3,5} \right)$. The line segment $\overline {PQ} $ can be parametrized by ${\bf{r}}\left( t \right) = \left( {4t,3t,5t} \right)$ ${\ \ \ }$ for $0 \le t \le 1$ ${\bf{r}}'\left( t \right) = \left( {4,3,5} \right)$ So, the work performed by the field is $W = \mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^1 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $W = \mathop \smallint \limits_0^1 \left( {2, - 1,4} \right)\cdot\left( {4,3,5} \right){\rm{d}}t = 25\mathop \smallint \limits_0^1 {\rm{d}}t = 25$ Evaluate ${\bf{F}}\cdot\overrightarrow {PQ} $: ${\bf{F}}\cdot\overrightarrow {PQ} = \left( {2, - 1,4} \right)\cdot\left( {4,3,5} \right) = 25$ So, $W = {\bf{F}}\cdot\overrightarrow {PQ} $. (b) We have $P = \left( {3,2,3} \right)$, $Q = \left( {4,8,12} \right)$. The line segment $\overline {PQ} $ can be parametrized by ${\bf{r}}\left( t \right) = \left( {3,2,3} \right) + t\left( {1,6,9} \right)$ ${\ \ \ }$ for $0 \le t \le 1$ ${\bf{r}}\left( t \right) = \left( {t + 3,6t + 2,9t + 3} \right)$ ${\bf{r}}'\left( t \right) = \left( {1,6,9} \right)$ So, the work performed by the field is $W = \mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^1 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $W = \mathop \smallint \limits_0^1 \left( {2, - 1,4} \right)\cdot\left( {1,6,9} \right){\rm{d}}t = 32\mathop \smallint \limits_0^1 {\rm{d}}t = 32$ Evaluate ${\bf{F}}\cdot\overrightarrow {PQ} $: ${\bf{F}} \cdot \overrightarrow {PQ} = \left( {2, - 1,4} \right)\cdot\left( {1,6,9} \right) = 32$ So, $W = {\bf{F}}\cdot\overrightarrow {PQ} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.