Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 50

Answer

The electric potential at $P$ is $V\left( P \right) = 16856.3$ volts.

Work Step by Step

We have the charge density $\delta \left( {x,y} \right) = {x^3}y$. The curve can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,{t^{ - 1}}} \right)$, ${\ \ \ }$ for $\frac{1}{2} \le t \le 2$ Thus, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1, - {t^{ - 2}}} \right)\cdot\left( {1, - {t^{ - 2}}} \right)} = \sqrt {1 + {t^{ - 4}}} $ $\delta \left( {{\bf{r}}\left( t \right)} \right) = {t^2}$ The distance ${d_P}$ from $P = \left( {0,0} \right)$ to a point $\left( {x,y} \right)$ on the curve is ${d_P} = \sqrt {{x^2} + {y^2}} = \sqrt {{t^2} + {t^{ - 2}}} = t\sqrt {1 + {t^{ - 4}}} $ Using Eq. (6), the electric potential at $P$ is given by $V\left( P \right) = k\mathop \smallint \limits_C^{} \frac{{\delta \left( {x,y} \right){\rm{d}}s}}{{{d_P}}} = k\mathop \smallint \limits_{1/2}^2 \frac{{\delta \left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}{\rm{d}}s$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$, where in this case $f\left( {x,y} \right) = \delta \left( {x,y} \right) = {x^3}y$, we obtain $V\left( P \right) = k\mathop \smallint \limits_{1/2}^2 \frac{{{t^2}\sqrt {1 + {t^{ - 4}}} }}{{t\sqrt {1 + {t^{ - 4}}} }}{\rm{d}}t$ $V\left( P \right) = k\mathop \smallint \limits_{1/2}^2 t{\rm{d}}t = \frac{k}{2}\left( {{t^2}|_{1/2}^2} \right) = \frac{k}{2}\left( {4 - \frac{1}{4}} \right) = \frac{{15}}{8}k$ With the charge density in units of ${10^{ - 6}}$ and $k = 8.99 \times {10^9}$, we obtain $V\left( P \right) = \frac{{15}}{8} \times 8.99 \times {10^9} \times {10^{ - 6}} = 16856.3$ So, the electric potential at $P$ is $V\left( P \right) = 16856.3$ volts.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.