Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 45

Answer

The total charge is $q \simeq 10.39 \times {10^{ - 6}}$ C.

Work Step by Step

We have the charge density of $\delta \left( {x,y} \right) = x/y$. The curve can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,{t^{4/3}}} \right)$, ${\ \ \ \ }$ for $1 \le t \le 8$ So, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1,\frac{4}{3}{t^{1/3}}} \right)\cdot\left( {1,\frac{4}{3}{t^{1/3}}} \right)} $ $ = \sqrt {1 + \frac{{16}}{9}{t^{2/3}}} $ Total charge: $q = \mathop \smallint \limits_1^8 \delta \left( {x,y} \right){\rm{d}}s$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$, where in this case $f\left( {x,y} \right) = \delta \left( {x,y} \right) = \frac{x}{y}$. So, $q = \mathop \smallint \limits_1^8 \delta \left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_1^8 {t^{ - 1/3}}\sqrt {1 + \frac{{16}}{9}{t^{2/3}}} {\rm{d}}t$ Write $u = 1 + \frac{{16}}{9}{t^{2/3}}$. So, $du = \frac{{32}}{{27}}{t^{ - 1/3}}dt$. By changing the variable from $t$ to $u$, the integral becomes $q = \frac{{27}}{{32}}\mathop \smallint \limits_{25/9}^{73/9} {u^{1/2}}{\rm{d}}u$ $ = \frac{{27}}{{32}}\cdot\frac{2}{3}\left( {{u^{3/2}}|_{25/9}^{73/9}} \right)$ $ = \frac{9}{{16}}\left( {{{\left( {\frac{{73}}{9}} \right)}^{3/2}} - {{\left( {\frac{{25}}{9}} \right)}^{3/2}}} \right) \simeq 10.39$ So, the total charge is $q \simeq 10.39 \times {10^{ - 6}}$ C.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.