Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 46

Answer

The total charge is $q \simeq 0.0698 \times {10^{ - 6}}$ C.

Work Step by Step

We have the charge density of $\delta \left( {x,y,z} \right) = xy\left( {{y^2} - z} \right)$ and the parametrization of the curve: ${\bf{r}}\left( t \right) = \left( {\sin t,\cos t,{{\sin }^2}t} \right)$, ${\ \ \ }$ for $0 \le t \le \frac{\pi }{8}$ So, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {\cos t, - \sin t,2\sin t\cos t} \right)\cdot\left( {\cos t, - \sin t,2\sin t\cos t} \right)} $ $ = \sqrt {{{\cos }^2} + {{\sin }^2}t + {{\left( {\sin 2t} \right)}^2}} $ $ = \sqrt {1 + {{\sin }^2}2t} $ Total charge: $q = \mathop \smallint \limits_0^{\pi /8} \delta \left( {x,y,z} \right){\rm{d}}s$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$, where in this case $f\left( {x,y,z} \right) = \delta \left( {x,y,z} \right) = xy\left( {{y^2} - z} \right)$. So, $q = \mathop \smallint \limits_0^{\pi /8} \delta \left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_0^{\pi /8} \sin t\cos t\left( {{{\cos }^2}t - {{\sin }^2}t} \right)\sqrt {1 + {{\sin }^2}2t} {\rm{d}}t$ $ = \frac{1}{2}\mathop \smallint \limits_0^{\pi /8} \sin 2t\cos 2t\sqrt {1 + {{\sin }^2}2t} {\rm{d}}t$ Write $u = 1 + {\sin ^2}2t$. So, $du = 4\sin 2t\cos 2tdt$. By changing the variable from $t$ to $u$, the integral becomes $q = \frac{1}{8}\mathop \smallint \limits_1^{3/2} {u^{1/2}}{\rm{d}}u$ $ = \frac{1}{8}\cdot\frac{2}{3}\left( {{u^{3/2}}|_1^{3/2}} \right)$ $ = \frac{1}{{12}}\left( {{{\left( {\frac{3}{2}} \right)}^{3/2}} - 1} \right) \simeq 0.0698$ So, the total charge is $q \simeq 0.0698 \times {10^{ - 6}}$ C.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.