Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 53

Answer

The work done by the field along the given path is $\frac{{27}}{{28}}$.

Work Step by Step

We obtain ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^3},{t^5},{t^4}} \right)$ ${\bf{r}}'\left( t \right) = \left( {1,2t,3{t^2}} \right)$ The work done by the field: $W = \mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^1 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $W = \mathop \smallint \limits_0^1 \left( {{t^3},{t^5},{t^4}} \right)\cdot\left( {1,2t,3{t^2}} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \left( {{t^3} + 5{t^6}} \right){\rm{d}}t$ $ = \left( {\frac{1}{4}{t^4} + \frac{5}{7}{t^7}} \right)|_0^1 = \frac{1}{4} + \frac{5}{7} = \frac{{27}}{{28}}$ So, the work done by the field along the given path is $\frac{{27}}{{28}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.