Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 62

Answer

We show that the integral of ${\bf{F}}$ along the segment from $P = \left( {a,b} \right)$ to $Q = \left( {a,c} \right)$ is equal to the angle $\angle POQ$.

Work Step by Step

We have the vector field ${\bf{F}}\left( {x,y} \right) = \left( {\frac{{ - y}}{{{x^2} + {y^2}}},\frac{x}{{{x^2} + {y^2}}}} \right)$. The line segment $\overrightarrow {PQ} $ can be parametrized by ${\bf{r}}\left( t \right) = \left( {a,b} \right) + t\left( {\left( {a,c} \right) - \left( {a,b} \right)} \right)$ $ = \left( {a,b} \right) + t\left( {0,c - b} \right)$ $ = \left( {a,t\left( {c - b} \right) + b} \right)$ for $0 \le t \le 1$. So, ${\bf{r}}'\left( t \right) = \left( {0,c - b} \right)$ ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {\frac{{ - \left( {t\left( {c - b} \right) + b} \right)}}{{{a^2} + {{\left( {t\left( {c - b} \right) + b} \right)}^2}}},\frac{a}{{{a^2} + {{\left( {t\left( {c - b} \right) + b} \right)}^2}}}} \right)$ Evaluate the line integral: $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^1 {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_0^1 \left( {\frac{{ - \left( {t\left( {c - b} \right) + b} \right)}}{{{a^2} + {{\left( {t\left( {c - b} \right) + b} \right)}^2}}},\frac{a}{{{a^2} + {{\left( {t\left( {c - b} \right) + b} \right)}^2}}}} \right)\cdot\left( {0,c - b} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \frac{{a\left( {c - b} \right)}}{{{a^2} + {{\left( {t\left( {c - b} \right) + b} \right)}^2}}}{\rm{d}}t$ Write $u = t\left( {c - b} \right) + b$. So, $du = \left( {c - b} \right)dt$. $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = a\mathop \smallint \limits_b^c \frac{1}{{{a^2} + {u^2}}}{\rm{d}}u$ From the Table of Integrals at the end of the book, we know that $\smallint \frac{1}{{{a^2} + {u^2}}}{\rm{d}}u = \frac{1}{a}{\tan ^{ - 1}}\frac{u}{a} + C$. So, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = {\tan ^{ - 1}}\frac{u}{a}|_b^c = {\tan ^{ - 1}}\frac{c}{a} - {\tan ^{ - 1}}\frac{b}{a}$ But ${\tan ^{ - 1}}\frac{c}{a}$ is the angle between $\overrightarrow {OQ} $ and the $x$-axis; and ${\tan ^{ - 1}}\frac{b}{a}$ is the angle between $\overrightarrow {OP} $ and the $x$-axis. So, ${\tan ^{ - 1}}\frac{c}{a} - {\tan ^{ - 1}}\frac{b}{a} = \theta $, which is the angle $\angle POQ$. Hence, the integral of ${\bf{F}}$ along the segment from $P = \left( {a,b} \right)$ to $Q = \left( {a,c} \right)$ is equal to the angle $\angle POQ$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.