Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 934: 63

Answer

(a) we show that ${\bf{F}}\left( {r,\theta } \right) = {r^{ - 1}}\left( { - \sin \theta ,\cos \theta } \right)$ (b) we show that ${\bf{F}}\cdot{\bf{r}}'\left( \theta \right)d\theta = d\theta $ (c) we show that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = {\theta _2} - {\theta _1}$

Work Step by Step

(a) We have the vector field ${\bf{F}}\left( {x,y} \right) = \left( {\frac{{ - y}}{{{x^2} + {y^2}}},\frac{x}{{{x^2} + {y^2}}}} \right)$. In polar coordinates: $x = r\cos \theta $, $y = r\sin \theta $. So, ${\bf{F}}\left( {r,\theta } \right) = \left( {\frac{{ - r\sin \theta }}{{{r^2}}},\frac{{r\cos \theta }}{{{r^2}}}} \right)$ Thus, ${\bf{F}}\left( {r,\theta } \right) = {r^{ - 1}}\left( { - \sin \theta ,\cos \theta } \right)$. (b) We have ${\bf{r}}\left( \theta \right) = \left( {f\left( \theta \right)\cos \theta ,f\left( \theta \right)\sin \theta } \right)$. Taking the derivative of ${\bf{r}}\left( \theta \right)$ with respect to $\theta $ gives ${\bf{r}}'\left( \theta \right) = \left( {f'\left( \theta \right)\cos \theta - f\left( \theta \right)\sin \theta ,f'\left( \theta \right)\sin \theta + f\left( \theta \right)\cos \theta } \right)$ So, ${\bf{F}}\cdot{\bf{r}}'\left( \theta \right)d\theta $ $ = {r^{ - 1}}\left( { - \sin \theta ,\cos \theta } \right)\cdot\left( {f'\left( \theta \right)\cos \theta - f\left( \theta \right)\sin \theta ,f'\left( \theta \right)\sin \theta + f\left( \theta \right)\cos \theta } \right)d\theta $ $ = {r^{ - 1}}\left( { - f'\left( \theta \right)\cos \theta \sin \theta + f\left( \theta \right){{\sin }^2}\theta + f'\left( \theta \right)\sin \theta \cos \theta + f\left( \theta \right){{\cos }^2}\theta } \right)d\theta $ $ = {r^{ - 1}}f\left( \theta \right)d\theta $ Since $r = f\left( \theta \right)$, so ${\bf{F}}\cdot{\bf{r}}'\left( \theta \right)d\theta = d\theta $. (c) Evaluate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{{\theta _1}}^{{\theta _2}} {\bf{F}}\left( {{\bf{r}}\left( \theta \right)} \right)\cdot{\bf{r}}'\left( \theta \right){\rm{d}}\theta $ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{{\theta _1}}^{{\theta _2}} {\rm{d}}\theta = {\theta _2} - {\theta _1}$ Thus, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = {\theta _2} - {\theta _1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.