Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 933: 43

Answer

The total mass is $64\pi $ gram.

Work Step by Step

The wire of radius $4$ cm centered at the origin can be parametrized by ${\bf{r}}\left( t \right) = \left( {4\cos t,4\sin t} \right)$, ${\ \ \ }$ for $0 \le t \le 2\pi $ So, $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( { - 4\sin t,4\cos t} \right)\cdot\left( { - 4\sin t,4\cos t} \right)} $ $ = \sqrt {16{{\sin }^2}t + 16{{\cos }^2}t} = \sqrt {16} = 4$ Total mass: $m = \mathop \smallint \limits_0^{2\pi } \delta \left( {x,y} \right){\rm{d}}s$ Using Eq. (4): $\mathop \smallint \limits_C^{} f\left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$, where in this case $f\left( {x,y} \right) = \delta \left( {x,y} \right) = {x^2}$, we get $m = \mathop \smallint \limits_0^{2\pi } \delta \left( {x,y} \right){\rm{d}}s = 64\mathop \smallint \limits_0^{2\pi } {\cos ^2}t{\rm{d}}t$ Using the double-angle formula (Section 1.4): ${\cos ^2}x = \frac{1}{2}\left( {1 + \cos 2x} \right)$ we get $m = \mathop \smallint \limits_0^{2\pi } \delta \left( {x,y} \right){\rm{d}}s = 64\mathop \smallint \limits_0^{2\pi } {\cos ^2}t{\rm{d}}t$ $ = 32\mathop \smallint \limits_0^{2\pi } \left( {1 + \cos 2t} \right){\rm{d}}t$ $ = 32\left( {\mathop \smallint \limits_0^{2\pi } {\rm{d}}t + \mathop \smallint \limits_0^{2\pi } \cos 2t{\rm{d}}t} \right)$ $ = 32\left( {2\pi + \frac{1}{2}\sin 2t|_0^{2\pi }} \right)$ $ = 64\pi $ So, the total mass is $64\pi $ g.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.