Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 933: 37

Answer

(a) $\mathop \smallint \limits_{ - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 8$ (b) $\mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 11$ (c) $\mathop \smallint \limits_{ - {C_1} - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 16$

Work Step by Step

(a) Write $\mathop \smallint \limits_{ - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ Since $\mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 8$, so $\mathop \smallint \limits_{ - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 8$. (b) Write $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 5 = \mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} + \mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} + \mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ Since $\mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 8$, $\mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 8$, so $5 = 8 + \mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} + 8$ $\mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 11$ (c) Write $\mathop \smallint \limits_{ - {C_1} - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{ - \left( {{C_1} + {C_3}} \right)}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \mathop \smallint \limits_{{C_1} + {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - \left( {\mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} + \mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}} \right)$ Since $\mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 8$, $\mathop \smallint \limits_{{C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 8$, so $\mathop \smallint \limits_{ - {C_1} - {C_3}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 16$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.