Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 933: 40

Answer

- the line integral of $f$ along $ABC$ $\mathop \smallint \limits_{ABC}^{} f\left( {x,y} \right){\rm{d}}s \approx \frac{\pi }{4}$ - the line integral of ${\bf{F}}$ along $ABC$ $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq 1.585$

Work Step by Step

1. compute the line integral of $f$ along $ABC$ The line integral of $f$ along $ABC$ is estimated by the sum: $\mathop \sum \limits_{i = 1}^N f\left( {{P_i}} \right){\rm{length}}\left( {{C_i}} \right) = \mathop \sum \limits_{i = 1}^N f\left( {{P_i}} \right)\Delta {s_i}$ where ${P_i}$ is the sample points; and the corresponding $f$ values at these points are listed in the table. From Figure 18 we obtain the radius $r = \frac{1}{2}$ and the element of the arc length $\Delta {s_i} = r\cdot\Delta {\theta _i} = \frac{1}{2}\cdot\frac{\pi }{6} = \frac{\pi }{{12}}$ for $1 \le i \le 3$. $\mathop \smallint \limits_{ABC}^{} f\left( {x,y} \right){\rm{d}}s \approx \mathop \sum \limits_{i = 1}^N f\left( {{P_i}} \right)\Delta {s_i} = \frac{\pi }{{12}}\left( {f\left( A \right) + f\left( B \right) + f\left( C \right)} \right)$ $\mathop \smallint \limits_{ABC}^{} f\left( {x,y} \right){\rm{d}}s \approx \frac{\pi }{{12}}\left( {1 - 2 + 4} \right) = \frac{\pi }{4}$ 2. compute the line integral of ${\bf{F}}$ along $ABC$ The line integral of ${\bf{F}}$ along $ABC$ is estimated by the sum: $\mathop \sum \limits_{i = 1}^N {\bf{F}}\left( {{P_i}} \right)\cdot\Delta {{\bf{r}}_i}$ where ${P_i}$ is the sample points; and the corresponding ${\bf{F}}$ values for these points are listed in the table. The path $ABC$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {\frac{1}{2}\cos t,\frac{1}{2}\sin t} \right)$ for $0 \le t \le \frac{\pi }{2}$. The vector element of distance is approximated by $\Delta {{\bf{r}}_i} \simeq {\bf{T}}\left( {{P_i}} \right)\Delta {s_i}$, where ${\bf{T}}\left( {{P_i}} \right)$ is the unit tangent vector at ${P_i}$. We evaluate the unit tangent vector: ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}}$ ${\bf{T}}\left( t \right) = \frac{{\left( { - \frac{1}{2}\sin t,\frac{1}{2}\cos t} \right)}}{{\sqrt {\left( { - \frac{1}{2}\sin t,\frac{1}{2}\cos t} \right)\cdot\left( { - \frac{1}{2}\sin t,\frac{1}{2}\cos t} \right)} }} = \frac{1}{2}\frac{{\left( { - \sin t,\cos t} \right)}}{{\sqrt {\frac{1}{4}\left( { - \sin t,\cos t} \right)\cdot\left( { - \sin t,\cos t} \right)} }}$ ${\bf{T}}\left( t \right) = \left( { - \sin t,\cos t} \right)$ Whereas the length of the arc length is $\Delta {s_i} = r\cdot\Delta {\theta _i} = \frac{1}{2}\cdot\frac{\pi }{6} = \frac{\pi }{{12}}$ for $1 \le i \le 3$. So, $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \mathop \sum \limits_{i = 1}^3 {\bf{F}}\left( {{P_i}} \right)\cdot\Delta {{\bf{r}}_i}$ $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \frac{\pi }{{12}}{\bf{F}}\left( A \right)\cdot\left( { - \sin \frac{\pi }{{12}},\cos \frac{\pi }{{12}}} \right) + \frac{\pi }{{12}}{\bf{F}}\left( B \right)\cdot\left( { - \sin \frac{\pi }{4},\cos \frac{\pi }{4}} \right)$ ${\ \ \ \ \ \ \ }$ $ + \frac{\pi }{{12}}{\bf{F}}\left( C \right)\cdot\left( { - \sin \frac{{5\pi }}{{12}},\cos \frac{{5\pi }}{{12}}} \right)$ $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \frac{\pi }{{12}}[\left( {1,2} \right)\cdot\left( { - \sin \frac{\pi }{{12}},\cos \frac{\pi }{{12}}} \right) + \left( {1,3} \right)\cdot\left( { - \sin \frac{\pi }{4},\cos \frac{\pi }{4}} \right)$ ${\ \ \ \ \ \ \ }$ $ + \left( { - 2,4} \right)\cdot\left( { - \sin \frac{{5\pi }}{{12}},\cos \frac{{5\pi }}{{12}}} \right)]$ $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq 1.585$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.