Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 933: 39

Answer

- the line integrals of $f$ along $ABC$ is $\mathop \smallint \limits_{ABC}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq 7.6$ - the line integral of ${\bf{F}}$ along $ABC$ is $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq 4$

Work Step by Step

1. compute the line integral of $f$ along $ABC$ The line integral of $f$ along $ABC$ is estimated by the sum: $\mathop \sum \limits_{i = 1}^N f\left( {{P_i}} \right){\rm{length}}\left( {{C_i}} \right) = \mathop \sum \limits_{i = 1}^N f\left( {{P_i}} \right)\Delta {s_i}$ where ${P_i}$ is the sample points; and the corresponding $f$ values at these points are listed in the table. a. the path ${C_1}$ from $A$ to $B$ We consider three regular partitions from $A$ to $B$ such that $\Delta {s_i} = \frac{1}{3}$, for $1 \le i \le 3$. So, $\mathop \smallint \limits_{{C_1}}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq f\left( {1,\frac{1}{6},0} \right)\cdot\frac{1}{3} + f\left( {1,\frac{1}{2},0} \right)\cdot\frac{1}{3} + f\left( {1,\frac{5}{6},0} \right)\cdot\frac{1}{3}$ $\mathop \smallint \limits_{{C_1}}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq 1 + 3.3\cdot\frac{1}{3} + 3.6\cdot\frac{1}{3} = 3.3$ b. the path ${C_2}$ from $B$ to $C$ We consider three regular partitions from $B$ to $C$ such that $\Delta {s_i} = \frac{1}{3}$, for $1 \le i \le 3$. So, $\mathop \smallint \limits_{{C_2}}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq f\left( {1,1,\frac{1}{6}} \right)\cdot\frac{1}{2} + f\left( {1,1,\frac{1}{2}} \right)\cdot\frac{1}{2} + f\left( {1,1,\frac{5}{6}} \right)\cdot\frac{1}{2}$ $\mathop \smallint \limits_{{C_2}}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq 4.2\cdot\frac{1}{3} + 4.5\cdot\frac{1}{3} + 4.2\cdot\frac{1}{3} = 4.3$ Thus, the line integrals of $f$ along $ABC$ is $\mathop \smallint \limits_{ABC}^{} f\left( {x,y,z} \right){\rm{d}}s = \mathop \smallint \limits_{{C_1}}^{} f\left( {x,y,z} \right){\rm{d}}s + \mathop \smallint \limits_{{C_2}}^{} f\left( {x,y,z} \right){\rm{d}}s \simeq 3.3 + 4.3 = 7.6$ 2. compute the line integral of ${\bf{F}}$ along $ABC$ The line integral of ${\bf{F}}$ along $ABC$ is estimated by the sum: $\mathop \sum \limits_{i = 1}^N {\bf{F}}\left( {{P_i}} \right)\cdot\Delta {{\bf{r}}_i}$ where ${P_i}$ is the sample points; and the corresponding ${\bf{F}}$ values for these points are listed in the table. a. the path ${C_1}$ from $A$ to $B$ We consider three regular partitions from $A$ to $B$ such that $\Delta {s_i} = \frac{1}{3}$, for $1 \le i \le 3$. Since the path is a line segment along the $y$-axis, so $\Delta {{\bf{r}}_i} = \frac{1}{3}{\bf{j}}$. Thus, $\Delta {{\bf{r}}_i} = \left( {0,\frac{1}{3},0} \right)$. So, $\mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \mathop \sum \limits_{i = 1}^3 {\bf{F}}\left( {{P_i}} \right)\cdot\Delta {{\bf{r}}_i}$ $ = {\bf{F}}\left( {1,\frac{1}{6},0} \right)\cdot\left( {0,\frac{1}{3},0} \right) + {\bf{F}}\left( {1,\frac{1}{2},0} \right)\cdot\left( {0,\frac{1}{3},0} \right) + {\bf{F}}\left( {1,\frac{5}{6},0} \right)\cdot\left( {0,\frac{1}{3},0} \right)$ $ = \left( {1,0,2} \right)\cdot\left( {0,\frac{1}{3},0} \right) + \left( {1,1,3} \right)\cdot\left( {0,\frac{1}{3},0} \right) + \left( {2,1,5} \right)\cdot\left( {0,\frac{1}{3},0} \right)$ $ = 0 + \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ b. the path ${C_2}$ from $B$ to $C$ We consider three regular partitions from $B$ to $C$ such that $\Delta {s_i} = \frac{1}{3}$, for $1 \le i \le 3$. Since the path is a line segment along the $z$-axis, so $\Delta {{\bf{r}}_i} = \frac{1}{3}{\bf{k}}$. Thus, $\Delta {{\bf{r}}_i} = \left( {0,0,\frac{1}{3}} \right)$. So, $\mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \mathop \sum \limits_{i = 1}^3 {\bf{F}}\left( {{P_i}} \right)\cdot\Delta {{\bf{r}}_i}$ $ = {\bf{F}}\left( {1,1,\frac{1}{6}} \right)\cdot\left( {0,0,\frac{1}{3}} \right) + {\bf{F}}\left( {1,1,\frac{1}{2}} \right)\cdot\left( {0,0,\frac{1}{3}} \right) + {\bf{F}}\left( {1,1,\frac{5}{6}} \right)\cdot\left( {0,0,\frac{1}{3}} \right)$ $ = \left( {3,2,4} \right)\cdot\left( {0,0,\frac{1}{3}} \right) + \left( {3,3,3} \right)\cdot\left( {0,0,\frac{1}{3}} \right) + \left( {5,3,3} \right)\cdot\left( {0,0,\frac{1}{3}} \right)$ $ = \frac{4}{3} + 1 + 1 = \frac{{10}}{3}$ Thus, the line integral of ${\bf{F}}$ along $ABC$ is $\mathop \smallint \limits_{ABC}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{{C_1}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} + \mathop \smallint \limits_{{C_2}}^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} \simeq \frac{2}{3} + \frac{{10}}{3} = 4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.