Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 48

Answer

$\mathop \sum \limits_{n = 1}^\infty \dfrac{1}{{{3^n} - {2^n}}}$ converges.

Work Step by Step

Write ${a_n} = \dfrac{1}{{{3^n} - {2^n}}}$ and ${b_n} = \dfrac{1}{{{3^n}}}$. We apply the Limit Comparison Test: $L = \mathop {\lim }\limits_{n \to \infty } \dfrac{{{a_n}}}{{{b_n}}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{{3^n}}}{{{3^n} - {2^n}}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{1 - \dfrac{{{2^n}}}{{{3^n}}}}} = 1$ Since $L \gt 0$ and $\mathop \sum \limits_{n = 1}^\infty \dfrac{1}{{{3^n}}}$ converges (because it is a geometric series with ratio $r = \dfrac{1}{3} \lt 1$), by the Limit Comparison Test, $\mathop \sum \limits_{n = 1}^\infty \dfrac{1}{{{3^n} - {2^n}}}$ converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.