Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 36

Answer

$\begin{array}{*{20}{c}} N&{{S_N}}\\ 1&{\dfrac{2}{3}}\\ 2&{\dfrac{{11}}{{12}}}\\ 3&{\dfrac{{21}}{{20}}}\\ 4&{\dfrac{{17}}{{15}}} \end{array}$ $S = \mathop {\lim }\limits_{N \to \infty } {S_N} = \dfrac{3}{2}$

Work Step by Step

Given $S = \mathop \sum \limits_{n = 1}^\infty \left( {\dfrac{1}{n} - \dfrac{1}{{n + 2}}} \right)$, we compute ${S_N}$ for $N = 1,2,3,4$: ${S_1} = 1 - \dfrac{1}{3} = \dfrac{2}{3}$ ${S_2} = \left( {1 - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{4}} \right)$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${S_2} = 1 + \dfrac{1}{2} - \dfrac{1}{3} - \dfrac{1}{4} = \dfrac{{11}}{{12}}$ ${S_3} = \left( {1 - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{4}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{5}} \right)$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${S_3} = 1 + \dfrac{1}{2} + \left( { - \dfrac{1}{3} + \dfrac{1}{3}} \right) - \dfrac{1}{4} - \dfrac{1}{5} = \dfrac{{21}}{{20}}$ ${S_4} = \left( {1 - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{4}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{5}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{6}} \right)$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${S_4} = 1 + \dfrac{1}{2} + \left( { - \dfrac{1}{3} + \dfrac{1}{3}} \right) + \left( { - \dfrac{1}{4} + \dfrac{1}{4}} \right) - \dfrac{1}{5} - \dfrac{1}{6} = \dfrac{{17}}{{15}}$ Here, we notice a pattern: ${S_N} = 1 + \dfrac{1}{2} + \left( { - \dfrac{1}{3} + \dfrac{1}{3}} \right) + \left( { - \dfrac{1}{4} + \dfrac{1}{4}} \right) + \cdot\cdot\cdot - \dfrac{1}{{N + 1}} - \dfrac{1}{{N + 2}}$ Since the pairs in the brackets are zero, we obtain ${S_N} = \dfrac{3}{2} - \dfrac{1}{{N + 1}} - \dfrac{1}{{N + 2}}$ By definition: $S = \mathop {\lim }\limits_{N \to \infty } {S_N}$. Thus, $S = \mathop {\lim }\limits_{N \to \infty } {S_N} = \mathop {\lim }\limits_{N \to \infty } \left( {\dfrac{3}{2} - \dfrac{1}{{N + 1}} - \dfrac{1}{{N + 2}}} \right) = \dfrac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.