Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 23

Answer

By Squeeze Theorem: $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\sqrt n }} = 0$

Work Step by Step

From the information prior to Exercise 31 in Section 11.3, we know that for $n$ sufficiently large, the following inequality is valid: $\ln n \le {n^a}$, ${\ \ \ \ \ }$ for all $a \gt 0$ Let $a = \dfrac{1}{2}$. So, $\ln n \le \sqrt n $. Therefore, $\dfrac{1}{{\sqrt n }} \le \dfrac{1}{{\ln n}}$ For $n \gt 0$, we have $\arctan \left( {{n^2}} \right) \gt 0$ and increasing. So, $0 \le \dfrac{{\arctan \left( {{n^2}} \right)}}{{\sqrt n }} \le \dfrac{{\arctan \left( {{n^2}} \right)}}{{\ln n}}$ Take the limit on all sides: $\mathop {\lim }\limits_{n \to \infty } 0 \le \mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\sqrt n }} \le \mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\ln n}}$ As $n \to \infty $, $\arctan \left( {{n^2}} \right) \to \dfrac{\pi }{2}$ and $\ln n \to \infty $. Therefore, $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\ln n}} = 0$. Thus, $0 \le \mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\sqrt n }} \le 0$ By Squeeze Theorem, $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\arctan \left( {{n^2}} \right)}}{{\sqrt n }} = 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.