Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 39

Answer

The series $\mathop \sum \limits_{n = 1}^\infty \dfrac{{{n^2}}}{{{n^3} + 1}}$ does not converge.

Work Step by Step

To apply the Integral Test, we find the limits of integration by plotting the graph of the function $f\left( x \right) = \dfrac{{{x^2}}}{{{x^3} + 1}}$. From the figure attached, we see that $f$ is positive, decreasing, and continuous for $x \ge 2$. So, we evaluate the definite integral: $\mathop \smallint \limits_2^\infty \dfrac{{{x^2}}}{{{x^3} + 1}}{\rm{d}}x$ Let $t = {x^3}$. So, $dt = 3{x^2}dx$. $\mathop \smallint \limits_2^\infty \dfrac{{{x^2}}}{{{x^3} + 1}}{\rm{d}}x = \dfrac{1}{3}\mathop \smallint \limits_8^\infty \dfrac{1}{{t + 1}}{\rm{d}}t = \dfrac{1}{3}\left[ {\ln \left( {t + 1} \right)} \right]_8^\infty = \infty $ Since $\mathop \smallint \limits_2^\infty \dfrac{{{x^2}}}{{{x^3} + 1}}{\rm{d}}x$ does not converge, by the Integral Test, the series $\mathop \sum \limits_{n = 1}^\infty \dfrac{{{n^2}}}{{{n^3} + 1}}$ does not converge.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.