Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 2

Answer

We prove using the limit definition: $\mathop {\lim }\limits_{n \to \infty } \dfrac{{2n - 1}}{{3n + 2}} = \dfrac{2}{3}$

Work Step by Step

Let $f\left( x \right) = \dfrac{{2n - 1}}{{3n + 2}}$. To prove that $\mathop {\lim }\limits_{n \to \infty } \dfrac{{2n - 1}}{{3n + 2}} = \dfrac{2}{3}$, we must show that $\left| {f\left( x \right) - \dfrac{2}{3}} \right|$ becomes arbitrarily small when $n$ approaches $\infty $. We have $\left| {f\left( x \right) - \dfrac{2}{3}} \right| = \left| {\dfrac{{2n - 1}}{{3n + 2}} - \dfrac{2}{3}} \right| = \left| {\dfrac{{6n - 3 - 6n - 4}}{{3\left( {3n + 2} \right)}}} \right| = \left| {\dfrac{{ - 7}}{{3\left( {3n + 2} \right)}}} \right|$ As $n \to \infty $, we have $\left| {f\left( x \right) - \dfrac{2}{3}} \right| \to 0$ as is required. Therefore, by definition $\mathop {\lim }\limits_{n \to \infty } \dfrac{{2n - 1}}{{3n + 2}} = \dfrac{2}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.