Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 591: 37

Answer

$S = \dfrac{{47}}{{180}}$

Work Step by Step

We can write $\dfrac{1}{{n\left( {n + 3} \right)}}$ as $\dfrac{1}{{n\left( {n + 3} \right)}} = \dfrac{1}{3}\left( {\dfrac{1}{n} - \dfrac{1}{{n + 3}}} \right)$ Thus, the partial sum becomes ${S_N} = \mathop \sum \limits_{n = 3}^N \dfrac{1}{{n\left( {n + 3} \right)}} = \dfrac{1}{3}\mathop \sum \limits_{n = 3}^N \left( {\dfrac{1}{n} - \dfrac{1}{{n + 3}}} \right)$ Since the summation index start from $3$, so we have the partial sums: ${S_3} = \dfrac{1}{3}\left( {\dfrac{1}{3} - \dfrac{1}{6}} \right)$ ${S_4} = \dfrac{1}{3}\left[ {\left( {\dfrac{1}{3} - \dfrac{1}{6}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} \right)} \right]$ ${S_5} = \dfrac{1}{3}\left[ {\left( {\dfrac{1}{3} - \dfrac{1}{6}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{8}} \right)} \right]$ ${S_6} = \dfrac{1}{3}\left[ {\left( {\dfrac{1}{3} - \dfrac{1}{6}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{8}} \right) + \left( {\dfrac{1}{6} - \dfrac{1}{9}} \right)} \right]$ ${S_7} = \dfrac{1}{3}\left[ {\left( {\dfrac{1}{3} - \dfrac{1}{6}} \right) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{8}} \right) + \left( {\dfrac{1}{6} - \dfrac{1}{9}} \right) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} \right)} \right]$ $\cdot\cdot\cdot$ In general, those fractions after and including $\dfrac{1}{6}$, that is, $\dfrac{1}{6},\dfrac{1}{7},\dfrac{1}{8},\cdot\cdot\cdot$ will be cancelled out. So, we obtain at the end: $S = \dfrac{1}{3}\left( {\dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5}} \right)$ So, $S = \dfrac{{47}}{{180}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.