Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 64

Answer

$${y^2} = \frac{{{e^{2x}}}}{{C - {e^{2x}}}}$$

Work Step by Step

$$\eqalign{ & y' - y = {y^3} \cr & {\text{The differential equation is written in the form}} \cr & y' + P\left( x \right)y = Q\left( x \right){y^n} \cr & y' - y = {y^3} \to P\left( x \right) = - 1,{\text{ }}Q\left( x \right) = 1,{\text{ }}n = 3 \cr & {\text{From the book we have that the general solution of a Bernoulli }} \cr & {\text{equation is:}} \cr & {y^{1 - n}}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = \int {\left( {1 - n} \right)Q\left( x \right){e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }}dx} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Find }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} \cr & {e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = {e^{\int {\left( {1 - 3} \right)\left( { - 1} \right)dx} }} = {e^{2\int {dx} }} = {e^{2x}} \cr & {\text{Substituting }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }},{\text{ }}n,{\text{ and }}Q\left( x \right){\text{ into }}\left( {\bf{1}} \right) \cr & {y^{1 - 3}}{e^{2x}} = \int {\left( {1 - 3} \right)\left( 1 \right){e^{2x}}dx} + C \cr & {y^{ - 2}}{e^{2x}} = - 2\int {{e^{2x}}dx} + C \cr & {\text{Integrating}} \cr & {y^{ - 2}}{e^{2x}} = - {e^{2x}} + C \cr & {\text{Solve for }}y \cr & {y^{ - 2}} = - \frac{{{e^{2x}}}}{{{e^{2x}}}} + \frac{C}{{{e^{2x}}}} \cr & \frac{1}{{{y^2}}} = - 1 + \frac{C}{{{e^{2x}}}} \cr & \frac{1}{{{y^2}}} = \frac{{C - {e^{2x}}}}{{{e^{2x}}}} \cr & {y^2} = \frac{{{e^{2x}}}}{{C - {e^{2x}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.