Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 62

Answer

$$y = {\left( {C\sqrt x - \frac{1}{3}{x^2}} \right)^2}$$

Work Step by Step

$$\eqalign{ & y' + \left( {\frac{1}{x}} \right)y = x\sqrt y \cr & y' + \left( {\frac{1}{x}} \right)y = x{y^{1/2}} \cr & {\text{The differential equation is written in the form}} \cr & y' + P\left( x \right)y = Q\left( x \right){y^n} \cr & y' + \left( {\frac{1}{x}} \right)y = x{y^{1/2}} \to P\left( x \right) = \frac{1}{x},{\text{ }}Q\left( x \right) = x,{\text{ }}n = \frac{1}{2} \cr & {\text{From the book we have that the general solution of a Bernoulli }} \cr & {\text{equation is:}} \cr & {y^{1 - n}}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = \int {\left( {1 - n} \right)Q\left( x \right){e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }}dx} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Find }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} \cr & {e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = {e^{\int {\left( {1 - \frac{1}{2}} \right)\left( {\frac{1}{x}} \right)dx} }} = {e^{ - \frac{1}{2}\int {\frac{1}{x}} dx}} = {e^{ - \frac{1}{2}\ln \left| x \right|}} = \frac{1}{{{x^{1/2}}}} \cr & {\text{Substituting }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }},{\text{ }}n,{\text{ and }}Q\left( x \right){\text{ into }}\left( {\bf{1}} \right) \cr & {y^{1 - 1/2}}\left( {\frac{1}{{{x^{1/2}}}}} \right) = \int {\left( {1 - \frac{1}{2}} \right)\left( x \right)\left( {\frac{1}{{{x^{1/2}}}}} \right)dx} + C \cr & {y^{1 - 1/2}}\left( {\frac{1}{{{x^{1/2}}}}} \right) = - \frac{1}{2}\int {{x^{1/2}}dx} + C \cr & {\text{Integrating}} \cr & {y^{1 - 1/2}}\left( {\frac{1}{{{x^{1/2}}}}} \right) = - \frac{1}{3}{x^{3/2}} + C \cr & {\text{Solve for }}y \cr & {y^{1/2}} = - \frac{1}{3}{x^{3/2}}{x^{1/2}} + C{x^{1/2}} \cr & {y^{1/2}} = - \frac{1}{3}{x^2} + C{x^{1/2}} \cr & y = {\left( {C\sqrt x - \frac{1}{3}{x^2}} \right)^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.