Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 52

Answer

$$2{y^3} + 12{y^2} - 3{x^2} + 18x = C$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{x - 3}}{{y\left( {y + 4} \right)}} \cr & {\text{Separate the variables}} \cr & y\left( {y + 4} \right)dy = \left( {x - 3} \right)dx \cr & \left( {{y^2} + 4y} \right)dy = \left( {x - 3} \right)dx \cr & {\text{Integrate both sides}} \cr & \int {\left( {{y^2} + 4y} \right)} dy = \int {\left( {x - 3} \right)} dx \cr & \frac{1}{3}{y^3} + 2{y^2} = \frac{{{x^2}}}{2} - 3x + {C_1} \cr & 2{y^3} + 12{y^2} = 3{x^2} - 18x + 12{C_1} \cr & 2{y^3} + 12{y^2} - 3{x^2} + 18x = C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.