Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 54

Answer

$$y = \sin \left( {{x^2} + C} \right)$$

Work Step by Step

$$\eqalign{ & y' = 2x\sqrt {1 - {y^2}} \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = 2x\sqrt {1 - {y^2}} \cr & {\text{Separate the variables}} \cr & \frac{{dy}}{{\sqrt {1 - {y^2}} }} = 2xdx \cr & {\text{Integrate both sides}} \cr & \int {\frac{{dy}}{{\sqrt {1 - {y^2}} }}} = \int {2x} dx \cr & \arcsin y = {x^2} + C \cr & {\text{Solve for }}y \cr & \sin \left( {\arcsin y} \right) = \sin \left( {{x^2} + C} \right) \cr & y = \sin \left( {{x^2} + C} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.