Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 57

Answer

$$y = \frac{{12}}{5}{x^2} + C{x^{ - 3}}$$

Work Step by Step

$$\eqalign{ & 3\left( {y - 4{x^2}} \right)dx + xdy = 0 \cr & {\text{Divide by }}xdx \cr & \frac{{3\left( {y - 4{x^2}} \right)dx}}{{xdx}} + \frac{{xdy}}{{xdx}} = 0 \cr & \frac{{3\left( {y - 4{x^2}} \right)}}{x} + \frac{{dy}}{{dx}} = 0 \cr & \frac{3}{x}y - 12x + \frac{{dy}}{{dx}} = 0 \cr & \frac{{dy}}{{dx}} + \frac{3}{x}y = 12x \cr & {\text{The differential equation has the form }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right) \cr & {\text{With }}P\left( x \right) = \frac{3}{x}{\text{, }}Q\left( x \right) = 12x \cr & {\text{Find the integrating factor }}I\left( x \right) = {e^{\int {P\left( x \right)} dx}} \cr & I\left( x \right) = {e^{\int {\frac{3}{x}dx} }} = {e^{3\ln x}} = {x^3} \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & {x^3}\left( {\frac{{dy}}{{dx}} + \frac{3}{x}y} \right) = {x^3}\left( {12x} \right) \cr & {x^3}\frac{{dy}}{{dx}} + 3{x^2}y = 12{x^4} \cr & {\text{Write the left side in the form }}\frac{d}{{dx}}\left[ {I\left( x \right)y} \right] \cr & \frac{d}{{dx}}\left[ {{x^3}y} \right] = 12{x^4} \cr & d\left[ {{x^3}y} \right] = 12{x^4}dx \cr & {\text{Integrate both sides}} \cr & {x^3}y = \int {12{x^4}} dx \cr & {x^3}y = \frac{{12}}{5}{x^5} + C \cr & {\text{Solve for }}y \cr & y = \frac{{12}}{5}{x^2} + C{x^{ - 3}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.