Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 51

Answer

$${e^{ - 2y}} + 2{e^x} = C$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{{e^{2x + y}}}}{{{e^{x - y}}}} \cr & {\text{Use the property }}\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \cr & \frac{{dy}}{{dx}} = {e^{2x + y - x + y}} \cr & \frac{{dy}}{{dx}} = {e^{x + 2y}} \cr & {\text{Use the property }}{a^{m + n}} = {a^m}{a^n} \cr & \frac{{dy}}{{dx}} = {e^x}{e^{2y}} \cr & {\text{Separate the variables}} \cr & {e^{ - 2y}}dy = {e^x}dx \cr & {\text{Integrate both sides}} \cr & \int {{e^{ - 2y}}} dy = \int {{e^x}} dx \cr & - \frac{1}{2}{e^{ - 2y}} = {e^x} + {C_1} \cr & {e^{ - 2y}} = - 2{e^x} - 2{C_1} \cr & {e^{ - 2y}} = - 2{e^x} + C \cr & {e^{ - 2y}} + 2{e^x} = C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.