Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 53

Answer

$$y = 1 + C{e^{ - \sin x}}$$

Work Step by Step

$$\eqalign{ & y\cos x - \cos x + \frac{{dy}}{{dx}} = 0 \cr & \frac{{dy}}{{dx}} + y\cos x = \cos x \cr & {\text{The differential equation has the form }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right) \cr & {\text{With }}P\left( x \right) = \cos x{\text{ }}Q\left( x \right) = \cos x \cr & {\text{Find the integrating factor }}I\left( x \right) = {e^{\int {P\left( x \right)} dx}} \cr & I\left( x \right) = {e^{\int {\cos xdx} }} = {e^{\sin x}} \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & {e^{\sin x}}\frac{{dy}}{{dx}} + y{e^{\sin x}}\cos x = {e^{\sin x}}\cos x \cr & {\text{Write the left side in the form }}\frac{d}{{dx}}\left[ {I\left( x \right)y} \right] \cr & \frac{d}{{dx}}\left[ {y{e^{\sin x}}} \right] = {e^{\sin x}}\cos x \cr & d\left[ {y{e^{\sin x}}} \right] = \left( {{e^{\sin x}}\cos x} \right)dx \cr & {\text{Integrate both sides}} \cr & y{e^{\sin x}} = \int {\left( {{e^{\sin x}}\cos x} \right)} dx \cr & y{e^{\sin x}} = {e^{\sin x}} + C \cr & {\text{Solve for }}y \cr & y = 1 + \frac{C}{{{e^{\sin x}}}} \cr & y = 1 + C{e^{ - \sin x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.