Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 59

Answer

$$\frac{1}{{{y^2}}} = \frac{1}{3} + C{e^{2{x^3}}}$$

Work Step by Step

$$\eqalign{ & y' + 3{x^2}y = {x^2}{y^3} \cr & {\text{The differential equation is written in the form}} \cr & y' + P\left( x \right)y = Q\left( x \right){y^n} \cr & y' + 3{x^2}y = {x^2}{y^3} \to P\left( x \right) = 3{x^2},{\text{ }}Q\left( x \right) = {x^2},{\text{ }}n = 3 \cr & {\text{From the book we have that the general solution of a Bernoulli }} \cr & {\text{equation is:}} \cr & {y^{1 - n}}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = \int {\left( {1 - n} \right)Q\left( x \right){e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }}dx} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Find }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} \cr & {e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }} = {e^{\int {\left( {1 - 3} \right)\left( {3{x^2}} \right)dx} }} = {e^{ - \int {6{x^2}dx} }} = {e^{ - 2{x^3}}} \cr & {\text{Substituting }}{e^{\int {\left( {1 - n} \right)P\left( x \right)dx} }},{\text{ }}n,{\text{ and }}Q\left( x \right){\text{ into }}\left( {\bf{1}} \right) \cr & {y^{1 - 3}}{e^{ - 2{x^3}}} = \int {\left( {1 - 3} \right)\left( {{x^2}} \right)\left( {{e^{ - 2{x^3}}}} \right)dx} + C \cr & {y^{ - 2}}{e^{ - 2{x^3}}} = \int {2{x^2}{e^{ - 2{x^3}}}dx} + C \cr & {\text{Integrating}} \cr & {y^{ - 2}}{e^{ - 2{x^3}}} = \frac{1}{3}\int {\left( { - 6{x^2}} \right){e^{ - 2{x^3}}}dx} + C \cr & {y^{ - 2}}{e^{ - 2{x^3}}} = \frac{1}{3}{e^{ - 2{x^3}}} + C \cr & {\text{Simplifying}} \cr & {y^{ - 2}}{e^{ - 2{x^3}}}{e^{2{x^3}}} = \frac{1}{3}{e^{ - 2{x^3}}}{e^{2{x^3}}} + C{e^{2{x^3}}} \cr & {y^{ - 2}} = \frac{1}{3} + C{e^{2{x^3}}} \cr & \frac{1}{{{y^2}}} = \frac{1}{3} + C{e^{2{x^3}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.