Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 430: 56

Answer

$$y = x\ln \left| x \right| + Cx$$

Work Step by Step

$$\eqalign{ & \left( {x + y} \right)dx - xdy = 0 \cr & {\text{Divide by }}xdx \cr & \frac{{\left( {x + y} \right)dx}}{{xdx}} - \frac{{xdy}}{{xdx}} = 0 \cr & \frac{{x + y}}{x} - \frac{{dy}}{{dx}} = 0 \cr & 1 + \frac{1}{x}y - \frac{{dy}}{{dx}} = 0 \cr & \frac{{dy}}{{dx}} - \frac{1}{x}y = 1 \cr & {\text{The differential equation has the form }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right) \cr & {\text{With }}P\left( x \right) = - \frac{1}{x}{\text{, }}Q\left( x \right) = 1 \cr & {\text{Find the integrating factor }}I\left( x \right) = {e^{\int {P\left( x \right)} dx}} \cr & I\left( x \right) = {e^{ - \int {\frac{1}{x}dx} }} = {e^{ - \ln x}} = \frac{1}{x} \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & \frac{1}{x}\left( {\frac{{dy}}{{dx}} - \frac{1}{x}y} \right) = \frac{1}{x} \cr & \frac{1}{x}\frac{{dy}}{{dx}} - \frac{1}{{{x^2}}}y = \frac{1}{x} \cr & {\text{Write the left side in the form }}\frac{d}{{dx}}\left[ {I\left( x \right)y} \right] \cr & \frac{d}{{dx}}\left[ {\frac{y}{x}} \right] = \frac{1}{x} \cr & d\left[ {\frac{y}{x}} \right] = \frac{1}{x}dx \cr & {\text{Integrate both sides}} \cr & \frac{y}{x} = \int {\frac{1}{x}} dx \cr & \frac{y}{x} = \ln \left| x \right| + C \cr & {\text{Solve for }}y \cr & y = x\ln \left| x \right| + Cx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.