Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.5 Derivatives of Trigonometric Functions - Exercises Set 2.5 - Page 151: 19


$\frac{d^2y}{dx^2}=-2\sin x-x\cos x$

Work Step by Step

$y=xcosx$ $\frac{dy}{dx}=cosx+x\times{-sinx}$ $\frac{dy}{dx}=cosx-xsinx$ $\frac{d^2y}{dx^2}=-sinx-(sinx+x\times{cosx})$ $\frac{d^2y}{dx^2}=-sinx-(sinx+xcosx)$ $\frac{d^2y}{dx^2}=-sinx-sinx-xcosx$ $\frac{d^2y}{dx^2}=-2\sin x-x\cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.