Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 42

Answer

The proof is below.

Work Step by Step

In the given figure, we note that $0 \leq \theta \leq \phi$ and $0 \leq r \leq 2 a \sin \theta .$ We have the integration limits. With this: \[ \begin{aligned} A &\left.=\int_{0}^{\phi} \int_{0}^{2 a \sin \theta} r d r d \theta=\int_{0}^{\phi} \frac{r^{2}}{2}\right]_{0}^{2 a \sin \theta} d \theta \\ &=\int_{0}^{\phi} \frac{1}{2} 4 a^{2} \sin ^{2} \theta d \theta=2 a^{2} \int_{0}^{\phi} \frac{-\cos (2 \theta)+1}{2} d \theta \\ &\left.\left.=a^{2}[\theta]_{0}^{\phi}-\frac{1}{2} \sin (2 \theta)\right]_{0}^{\phi}\right]=a^{2} \phi-\frac{1}{2} a^{2} \sin (2 \phi) \end{aligned} \] $A=a^{2} \phi-\frac{1}{2} a^{2} \sin (2 \phi) .$ QED
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.