Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 28

Answer

$=\pi \left(-e^{-4}+1\right) $

Work Step by Step

$\int_{-2}^{2} \int_{\sqrt{4-y^{2}}}^{\sqrt{4+y^{2}}} e^{-\left(y^{2}+x^{2}\right)} d x d y$ changing to polar coordinates $R=\{(r . \theta): 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant r \leqslant 2\}$ so $=\int_{0}^{2 \pi} \int_{0}^{2} e^{-r^{2}} r d r d \theta$ integrate with respect to $r$ $=\left.\int_{0}^{2 \pi}\left(-\frac{1}{2} e^{-r^{2}}\right)\right|_{0} ^{2} d \theta$ $=-\frac{1}{2} \int_{0}^{2 \pi}\left(e^{-4}-1\right) d \theta$ integrate $=\frac{-e^{-4}+1}{2}[\theta]_{0}^{2 \pi}$ $=(2 \pi) \frac{-e^{4}+1}{2}$ $=\pi \left(-e^{-4}+1\right) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.