Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 30

Answer

$=\frac{\pi \sin 1}{4}$

Work Step by Step

$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos \left(y^{2}+x^{2}\right) d x d y R=\left\{(r, \theta): 0 \leqslant \theta \leqslant \frac{\pi}{2}, 0 \leqslant r \leqslant 1\right\}$ convert to polar coordinates $R=\left\{(r, \theta): 0 \leqslant \theta \leqslant \frac{\pi}{2}, 0 \leqslant r \leqslant 1\right\}$ so $=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \cos \left(r^{2}\right) r d r d \theta$ integrate with respect to $=\frac{1}{2}=\int_{0}^{\frac{\pi}{2}}\left[\sin r^{2}\right]_{0}^{1} d \theta$ $=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(-\sin 0+\sin 1) d \theta$ $=\frac{\sin 1}{2} \int_{0}^{\frac{\pi}{2}} d \theta$ integrate and evaluate $=\frac{\sin 1}{2}[\theta]_{0}^{\frac{\pi}{2}}$ $=\frac{\sin 1}{2}\left[\frac{\pi}{2}-0\right]$ $=\frac{\pi \sin 1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.