Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 33

Answer

$=\frac{(\sqrt{5}-1) \pi}{4}$

Work Step by Step

$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}+1}} d x d y$ convert the limits to polar coordinates $R=\left\{(r, \theta): 0 \leqslant \theta \leqslant \frac{\pi}{4}, 0 \leqslant r \leqslant 2\right\}$ so $=\int_{0}^{\frac{\pi}{4}} \int_{0}^{2} \frac{r}{\sqrt{r^{2}+1}} d r d \theta$ $=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2}(\sqrt{r^{2}+1})^{-1 / 2}(2 r) d r d \theta$ integrate with respect to $r$ $=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}\left[\frac{(\sqrt{1+r^{2}})^{1 / 2}}{\frac{1}{2}}\right]_{0}^{2} d \theta$ $=\left(\int_{0}^{\frac{\pi}{4}}(\sqrt{1+2^{2}})^{1 / 2}-\left(1+0^{2}\right)^{1 / 2}\right) d \theta$ $=\int_{0}^{\frac{\pi}{4}}(-1+\sqrt{5}) d \theta$ evaluate and integrate $=(-1+\sqrt{5})[\theta]_{0}^{\pi / 4}$ $=\frac{(\sqrt{5}-1) \pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.