Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 24

Answer

$\frac{9 \pi}{2}$

Work Step by Step

$\int_{R} \int \sqrt{-x^{2}-y^{2}+9}$ $R: 9=x^{2}+y^{2} \Rightarrow R=\left\{(r, \theta): 0 \leqslant r \leqslant 3,0 \leqslant \theta \leqslant \frac{\pi}{2}\right\}$ $\sqrt{9-x^{2}-y^{2}} d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \sqrt{9-r^{2}} r d r d \theta$ integrate with respect to $r$ $=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left[\frac{\left(9-r^{2}\right)^{3 / 2}}{3 / 2}\right]_{0}^{3} d \theta$ $=-\frac{1}{3} \int_{0}^{\frac{\pi}{2}}\left[-(9-0)^{3 / 2}+(9-9)^{3 / 2}\right] d \theta$ $=-\frac{1}{3} \int_{0}^{\frac{\pi}{2}}(-27) d \theta=9 \int_{0}^{\frac{\pi}{2}} d \theta$ integrate $9\left(-0+\frac{\pi}{2}\right)=\frac{9 \pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.