Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 27

Answer

$=\frac{\pi}{8}$

Work Step by Step

$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(y^{2}+x^{2}\right) d y d x$ changing to polar coordinates $=\int_{0}^{\pi / 2} \int_{0}^{1}\left(r^{2}\right) r d r d \theta$ integrate and simplify $=\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} d r d \theta$ integrate with respect to $r$ $=\int_{0}^{\pi / 2}\left[\frac{r^{4}}{4}\right]_{0}^{1} d \theta$ $=\frac{1}{4} \int_{0}^{\pi / 2} d \theta$ integrate $=\frac{1}{4}[\theta]_{0}^{\pi / 2}$ $=\frac{\pi}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.