Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 29

Answer

$=\frac{16}{9}$

Work Step by Step

$\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{y^{2}+x^{2}} d y d x$ convert to polar coordinates $R=\left\{(r, \theta): 0 \leqslant \theta \leqslant \frac{\pi}{2}, 0 \leqslant r \leqslant 2 \cos \theta\right\}$ so $=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} \sqrt{r^{2}} r d r d \theta=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r^{2} d r d$ integrate $=\int_{0}^{\frac{\pi}{2}}\left[\frac{r^{3}}{3}\right]_{0}^{2 \cos \theta} d \theta$ $=\frac{1}{3} \int_{0}^{\frac{\pi}{2}} 8 \cos ^{3} \theta d \theta=\frac{8}{3} \int_{0}^{\frac{\pi}{3}} \cos ^{2} \theta \cos \theta d \theta$ $=\frac{8}{3} \int_{0}^{\frac{\pi}{2}}\left(-\sin ^{2} \theta+1\right) \cos \theta d \theta$ integrate and evaluate $=\frac{8}{3}\left[\sin \theta-\frac{\sin ^{3} \theta}{3}\right]_{0}^{\frac{\pi}{2}}$ $=\left(\sin \frac{\pi}{2}-\frac{\sin ^{3} \frac{\pi}{2}}{3}\right)\frac{8}{3} $ $=\left(1-\frac{1}{3}\right)\frac{8}{3}$ $=\left(\frac{2}{3}\right)\frac{8}{3}$ $=\frac{16}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.