Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1025: 34

Answer

$=-128$

Work Step by Step

$\int_{-4}^{0} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} 3 x d y d x$ convert the limits to polar coordinates $R=\left\{(r, \theta): \frac{\pi}{2} \leqslant \theta \leqslant \frac{3 \pi}{2}, 0 \leqslant r \leqslant 4\right\}$ $r \cos \theta=x \rightarrow 3 x=3 r \cos \theta$ so $=\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{4} 3 r^{2} \cos \theta d r d \theta$ integrate with respect to $r$ $=\int_{\pi / 2}^{3 \pi / 2}\left[r^{3} \cos \theta\right]_{0}^{4} d \theta$ $=\int_{\pi / 2}^{3 \pi / 2}\left(4^{3} \cos \theta-0^{3} \cos \theta\right) d \theta$ $=64 \int_{\pi / 2}^{3 \pi / 2} \cos \theta d \theta$ evaluate and integrate $=64[\sin \theta]_{\pi / 2}^{3 \pi / 2}$ $64\left[-\sin \frac{\pi}{2}+\sin \frac{3 \pi}{2}\right]$ $=(-1-1)64$ $=-128$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.