Answer
$\sinh 1-\cosh 1+1$
Work Step by Step
Using the rules of integrals, we obtain:
Area $=\iint_{R} d A=\int_{0}^{1} \int_{\sinh x}^{\cosh x} d y d x$
$=\int_{0}^{1}[y]_{\sinh x}^{\cosh x} d x$
$=\int_{0}^{1} -\sinh x +\cosh x d x$
$=[-\cosh x+\sinh x]_{0}^{1}$
$=[\sinh 1-\cosh 1]-[\sinh 0-\cosh 0]$
$=\sinh 1-\cosh 1+1$