Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 30

Answer

$$\frac{125}{6}$$

Work Step by Step

Using the rules of integrals, we obtain: Area $=\int_{-4}^{1} \int_{3 y-4}^{-y^{2}} d x d y=\iint_{R} d A$ $=\int_{-4}^{1}[x]_{3 y-4}^{-y^{2}} d y$ $=\int_{-4}^{1}4-y^{2}-3 y+d y$ $=\left[-\frac{3 y^{2}}{2}-\frac{y^{3}}{3}+4 y\right]_{-4}^{1}$ $=\left[-\frac{1^{3}}{3}-\frac{3 \cdot 1^{2}}{2}+4 \cdot 1\right]-\left[-\frac{(-4)^{3}}{3}-\frac{3(-4)^{2}}{2}+4(-4)\right]$ $\begin{aligned}{=\left[-\frac{1^{3}}{3}-\frac{3 \cdot 1^{2}}{2}+4 \cdot 1\right]-\left[-\frac{(-4)^{3}}{3}-\frac{3(-4)^{2}}{2}+4(-4)\right]}{=\left[-\frac{1}{3}-\frac{3}{2}+4\right]-\left[\frac{64}{3}-24-16\right]} \\ &=-\frac{64}{3}+24+16-\frac{1}{3}-\frac{3}{2}+4=\frac{125}{6} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.