Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 18

Answer

The answer is below.

Work Step by Step

Type I region, \[ \begin{aligned} \iint_{R} y d A &=\int_{0}^{5} \int_{5-x}^{\sqrt{25-x^{2}}} y d y d x \\ &=\int_{0}^{5}\left[\frac{y^{2}}{2}\right]_{5-x}^{\sqrt{25-x^{2}}} d x \\ &=\frac{1}{2} \int_{0}^{5}\left(\left(25-x^{2}\right)-(5-x)^{2}\right) d x \\ &=\frac{1}{2} \int_{0}^{5}\left(-2 x^{2}+10x \right) d x \\ &=\frac{125}{6} \end{aligned} \] Type II region, \[ \begin{aligned} \iint_{R} y d A &=\int_{0}^{5} \int_{5-y}^{\sqrt{25-y^{2}}} y d x d y \\ &=\int_{0}^{5} y(\sqrt{25-y^{2}}-(5-y)) d y \\ &=\int_{0}^{5} y \sqrt{25-y^{2}} d y-\int_{0}^{5} y(5-y) d y \end{aligned} \] Replacing $y=\sin \theta$ on the first integral gives \[ \frac{125}{6} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.