Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 14

Answer

The answer is below.

Work Step by Step

We find: $(a)$ $\begin{aligned} \int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(x+y) d y d x &=\int_{0}^{1}\left[\frac{y^{2}}{2}+yx\right]_{x^{2}}^{\sqrt{x}} d x \\ &=\int_{0}^{1}\left(-\frac{x^{4}}{2}-x^{3}+\frac{x}{2}+x^{3 / 2}\right) d x \\ &=\left[\frac{2 x^{5 / 2}}{5}-\frac{x^{4}}{4}-\frac{x^{5}}{10}+\frac{x^{2}}{4}\right]_{0}^{1} \\ &=\frac{3}{10} \end{aligned}$ $(b)$ $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(y+x) d y d x=\int_{-1}^{1}\left[\frac{y^{2}}{2}+y x \right]_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d x$ $=\int_{-1}^{1}(2 x \sqrt{1-x^{2}}) d x$ $=\left[-\frac{2}{3}\left(-x^{2}+1\right)^{3 / 2}\right]_{-1}^{1}$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.