Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 23

Answer

$$-\frac{7}{60}$$

Work Step by Step

Using the rules of integrals, we obtain: $\iint_{R} x-1 d A=\int_{0}^{1} \int_{x^{3}}^{x} -1+x d y d x$ $=\int_{0}^{1}[-y+x y]_{x^{3}}^{x} d x$ $=\int_{0}^{1}-\left[x^{4}-x^{3}\right] d x+\left[x^{2}-x\right]$ $=\int_{0}^{1} x^{2}-x-x^{4}+x^{3} d x$ $=\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-\frac{1}{5} x^{5}+\frac{1}{4} x^{4}\right]_{0}^{1}$ $-\frac{7}{60}=-\frac{1}{2}-\frac{1}{5}+\frac{1}{4}+\frac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.