Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 20

Answer

$$\pi$$

Work Step by Step

We find: $\int_{0}^{\pi} \int_{0}^{x} x \cos y d y d x=\iint_{R} x \cos y d A$ $=\int_{0}^{\pi}[x \sin y]_{0}^{x} d x$ $=\int_{0}^{\pi} x \sin x d x$ $=\left[x \int \sin x d x-\int\left[\frac{d x}{d x} \int \sin x d x\right] d x\right]_{0}^{\pi}$ $=\left[-x \cos x+\int \cos x d x\right]_{0}^{\pi}$ $=[\sin x-x \cos x]_{0}^{\pi}=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.