Answer
$$\pi$$
Work Step by Step
We find:
$\int_{0}^{\pi} \int_{0}^{x} x \cos y d y d x=\iint_{R} x \cos y d A$
$=\int_{0}^{\pi}[x \sin y]_{0}^{x} d x$
$=\int_{0}^{\pi} x \sin x d x$
$=\left[x \int \sin x d x-\int\left[\frac{d x}{d x} \int \sin x d x\right] d x\right]_{0}^{\pi}$
$=\left[-x \cos x+\int \cos x d x\right]_{0}^{\pi}$
$=[\sin x-x \cos x]_{0}^{\pi}=\pi$