Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 21

Answer

$$\frac{50}{3}$$

Work Step by Step

Using the rules of integrals, we obtain: $\int_{0}^{2} \int_{y^{2}}^{6-y} x y d x d y=\iint_{R} x y d A$ $=\int_{0}^{2}\left[\frac{x^{2} y}{2}\right]_{y^{2}}^{6-y} d y$ $=\int_{0}^{2} \frac{(6-y)^{2} y}{2}-\frac{\left(y^{2}\right)^{2} y}{2} d y$ $=\int_{0}^{2} \frac{y\left(y^{2}-12 y+36\right) }{2}-\frac{y^{5}}{2} d y$ $=\frac{1}{2} \int_{0}^{2} -y^{5} +y^{3}-12 y^{2}+36 yd y$ $=\frac{1}{2}\left[\frac{y^{4}}{4}-4 y^{3}+18 y^{2}-\frac{y^{6}}{6}\right]_{0}^{2}$ $\frac{50}{3}=\left[\frac{2^{4}}{4}-4 \cdot 2^{3}+18 \cdot 2^{2}-\frac{2^{6}}{6}\right]\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.