Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1016: 25

Answer

\[ \frac{-\cos 8+1}{3} \]

Work Step by Step

Using the rules of integrals, we obtain: \[ \begin{array}{c} \int_{0}^{2} \int_{0}^{y^{2}} \sin y^{3} d x d y=\iint \sin y^{3} d A \\ =\int_{0}^{2}\left[x \sin y^{3}\right]_{0}^{y^{2}} d y \\ =\int_{0}^{2} y^{2} \sin y^{3} d y \\ =\frac{1}{3} \int_{0}^{2} 3 y^{2} \sin y^{3} d y \end{array} \] Replace $3 y^{2} d y=d u$ and $u=y^{3}$ $=\frac{1}{3} \int_{0}^{8} \sin u d u$ \[ \begin{array}{c} =\frac{1}{3}[-\cos u]_{0}^{8} \\ =\frac{-\cos 8+1}{3} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.