Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 4

Answer

$\left\langle {2,\frac{1}{2},\sin 2} \right\rangle $

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 1} \left\langle {\frac{3}{{{t^2}}},\frac{{\ln t}}{{{t^2} - 1}},\sin 2t} \right\rangle \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{t \to 1} \left\langle {\frac{3}{{{t^2}}},\frac{{\ln t}}{{{t^2} - 1}},\sin 2t} \right\rangle = \left\langle {\mathop {\lim }\limits_{t \to 1} \frac{3}{{{t^2}}},\mathop {\lim }\limits_{t \to 1} \frac{{\ln t}}{{{t^2} - 1}},\mathop {\lim }\limits_{t \to 1} \sin 2t} \right\rangle \cr & {\text{Where }}\mathop {\lim }\limits_{t \to 1} \frac{{\ln t}}{{{t^2} - 1}} = \frac{0}{0} \cr & {\text{By the L'Hopital's Rule}} \cr & \mathop {\lim }\limits_{t \to 1} \frac{{\ln t}}{{{t^2} - 1}} = \mathop {\lim }\limits_{t \to 1} \frac{{\frac{d}{{dt}}\left[ {\ln t} \right]}}{{\frac{d}{{dt}}\left[ {{t^2} - 1} \right]}} = \mathop {\lim }\limits_{t \to 1} \frac{{1/t}}{{2t}} = \mathop {\lim }\limits_{t \to 1} \frac{1}{{2{t^2}}} = \frac{1}{2} \cr & {\text{Therefore,}} \cr & \left\langle {\mathop {\lim }\limits_{t \to 1} \frac{3}{{{t^2}}},\mathop {\lim }\limits_{t \to 1} \frac{{\ln t}}{{{t^2} - 1}},\mathop {\lim }\limits_{t \to 1} \sin 2t} \right\rangle = \left\langle {\frac{3}{{{{\left( 1 \right)}^2}}},\frac{1}{2},\sin 2\left( 1 \right)} \right\rangle \cr & {\text{ }} = \left\langle {3,\frac{1}{2},\sin 2} \right\rangle \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.