Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 856: 21

Answer

$$x = 1 - \sqrt 3 \pi t;{\text{ }}y = \sqrt 3 + \pi t,{\text{ }}z = 1 + 3t$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 2\cos \pi t{\bf{i}} + 2\sin \pi t{\bf{j}} + 3t{\bf{k}};{\text{ }}{t_0} = \frac{1}{3} \cr & {\text{Calculate }}{\bf{r}}\left( {{t_0}} \right) \cr & {\bf{r}}\left( {\frac{1}{3}} \right) = 2\cos \left( {\frac{\pi }{3}} \right){\bf{i}} + 2\sin \left( {\frac{\pi }{3}} \right){\bf{j}} + 3\left( {\frac{1}{3}} \right){\bf{k}} \cr & {\bf{r}}\left( {\frac{1}{3}} \right) = 2\left( {\frac{1}{2}} \right){\bf{i}} + 2\left( {\frac{{\sqrt 3 }}{2}} \right){\bf{j}} + {\bf{k}} \cr & {\bf{r}}\left( {\frac{1}{3}} \right) = {\bf{i}} + \sqrt 3 {\bf{j}} + {\bf{k}} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( {{t_0}} \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {2\cos \pi t{\bf{i}} + 2\sin \pi t{\bf{j}} + 3t{\bf{k}}} \right] \cr & {\bf{r}}'\left( t \right) = - 2\pi \sin \pi t{\bf{i}} + 2\pi \cos \pi t{\bf{j}} + 3{\bf{k}} \cr & {\bf{r}}{\text{'}}\left( {\frac{1}{3}} \right) = - 2\pi \sin \left( {\frac{\pi }{3}} \right){\bf{i}} + 2\pi \cos \left( {\frac{\pi }{3}} \right){\bf{j}} + 3{\bf{k}} \cr & {\bf{r}}{\text{'}}\left( {\frac{1}{3}} \right) = - 2\pi \left( {\frac{{\sqrt 3 }}{2}} \right){\bf{i}} + 2\pi \left( {\frac{1}{2}} \right){\bf{j}} + 3{\bf{k}} \cr & {\bf{r}}{\text{'}}\left( {\frac{1}{3}} \right) = - \sqrt 3 \pi {\bf{i}} + \pi {\bf{j}} + 3{\bf{k}} \cr & {\text{Let }}{{\bf{r}}_0} = {\bf{r}}\left( {{t_0}} \right){\text{ and }}{{\bf{v}}_0}{\text{ = }}{\bf{r}}{\text{'}}\left( {{t_0}} \right){\text{ }} \cr & {\text{The tangent line to the graph of }}{\bf{r}}\left( t \right){\text{ at }}{{\bf{r}}_0}{\text{ is given by the vector }} \cr & {\text{equation}} \cr & {\bf{r}} = {{\bf{r}}_0} + t{{\bf{v}}_0} \cr & {\bf{r}} = {\bf{r}}\left( {{t_0}} \right) + t{\bf{r}}{\text{'}}\left( {{t_0}} \right){\text{ }} \cr & {\bf{r}} = {\bf{i}} + \sqrt 3 {\bf{j}} + {\bf{k}} + t\left( { - \sqrt 3 \pi {\bf{i}} + \pi {\bf{j}} + 3{\bf{k}}} \right) \cr & {\bf{r}} = {\bf{i}} + \sqrt 3 {\bf{j}} + {\bf{k}} - \sqrt 3 \pi t{\bf{i}} + \pi t{\bf{j}} + 3t{\bf{k}} \cr & {\bf{r}} = \left( {1 - \sqrt 3 \pi t} \right){\bf{i}} + \left( {\sqrt 3 + \pi t} \right){\bf{j}} + \left( {1 + 3t} \right){\bf{k}} \cr & {\text{Thus}},{\text{the parametric equations of the tangent line at }}t = {t_0}{\text{ are:}} \cr & x = 1 - \sqrt 3 \pi t;{\text{ }}y = \sqrt 3 + \pi t,{\text{ }}z = 1 + 3t \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.